Contact:
Room: 522, https://telco.pcz.pl/and-d9x-drw ( w przypadku dostępu on-line)
Position:
Associate Professor
Classes:
Programowanie systemów wbudowanych wyk
Sprzętowo-programowe metody przetwarzania danych lab
Sprzętowo-programowe metody przetwarzania danych wyk
PhD DSc Eng
Andrzej Przybył
Office hours: Konsultacje odbywają się w poniedziałki w godz. 14.30-17.30 w sali 522 w KISI. UWAGA ! Konieczne jest wcześniejsze indywidualne, e-mailowe uzgodnienie wizyty na konsultacjach.
Papers (66)
2021 (25)
Piotr Dziwinski and Andrzej Przybył and Paweł Trippner and Józef Paszkowski and Yoichi Hayashi, HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM. (2)
HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM
, HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM, Publisher in Open Access Version: Sciendo (De Gruyter Open), 243 - 266, 2021, Cites: 2
Piotr Dziwinski and Andrzej Przybył and Paweł Trippner and Józef Paszkowski and Yoichi Hayashi, HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM. (2)
HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM
, HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM, Publisher in Open Access Version: Sciendo (De Gruyter Open), 243 - 266, 2021, Cites: 2
Piotr Dziwinski and Andrzej Przybył and Paweł Trippner and Józef Paszkowski and Yoichi Hayashi, HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM. (2)
HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM
, HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM, Publisher in Open Access Version: Sciendo (De Gruyter Open), 243 - 266, 2021, Cites: 2
Piotr Dziwinski and Andrzej Przybył and Paweł Trippner and Józef Paszkowski and Yoichi Hayashi, HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM. (2)
HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM
, HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM, Publisher in Open Access Version: Sciendo (De Gruyter Open), 243 - 266, 2021, Cites: 2
Piotr Dziwinski and Andrzej Przybył and Paweł Trippner and Józef Paszkowski and Yoichi Hayashi, HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM. (2)
HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM
, HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM, Publisher in Open Access Version: Sciendo (De Gruyter Open), 243 - 266, 2021, Cites: 2
Piotr Dziwinski and Andrzej Przybył and Paweł Trippner and Józef Paszkowski and Yoichi Hayashi, HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM. (2)
HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM
, HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM, Publisher in Open Access Version: Sciendo (De Gruyter Open), 243 - 266, 2021, Cites: 2
Piotr Dziwinski and Andrzej Przybył and Paweł Trippner and Józef Paszkowski and Yoichi Hayashi, HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM. (2)
HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM
, HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM, Publisher in Open Access Version: Sciendo (De Gruyter Open), 243 - 266, 2021, Cites: 2
Piotr Dziwinski, Andrzej Przybył, Paweł Trippner, Józef Paszkowski, Yoichi Hayashi, Hardware implementation of a Takagi-Sugeno neuro-fuzzy system optimized by a population algorithm. (0)
Hardware implementation of a Takagi-Sugeno neuro-fuzzy system optimized by a population algorithm
, Hardware implementation of a Takagi-Sugeno neuro-fuzzy system optimized by a population algorithm, University of Social Sciences. Information Technology Institute, 243 - 266, 2021, Cites: 0
Piotr Dziwinski and Andrzej Przybył and Paweł Trippner and Józef Paszkowski and Yoichi Hayashi, HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM. (2)
HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM
, HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM, Publisher in Open Access Version: Sciendo (De Gruyter Open), 243 - 266, 2021, Cites: 2
Piotr Dziwinski and Andrzej Przybył and Paweł Trippner and Józef Paszkowski and Yoichi Hayashi, HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM. (2)
HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM
, HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM, Publisher in Open Access Version: Sciendo (De Gruyter Open), 243 - 266, 2021, Cites: 2
Piotr Dziwinski and Andrzej Przybył and Paweł Trippner and Józef Paszkowski and Yoichi Hayashi, HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM. (2)
HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM
, HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM, Publisher in Open Access Version: Sciendo (De Gruyter Open), 243 - 266, 2021, Cites: 2
Piotr Dziwinski and Andrzej Przybył and Paweł Trippner and Józef Paszkowski and Yoichi Hayashi, HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM. (2)
HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM
, HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM, Publisher in Open Access Version: Sciendo (De Gruyter Open), 243 - 266, 2021, Cites: 2
Piotr Dziwinski and Andrzej Przybył and Paweł Trippner and Józef Paszkowski and Yoichi Hayashi, HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM. (2)
HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM
, HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM, Publisher in Open Access Version: Sciendo (De Gruyter Open), 243 - 266, 2021, Cites: 2
Piotr Dziwinski and Andrzej Przybył and Paweł Trippner and Józef Paszkowski and Yoichi Hayashi, HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM. (2)
HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM
, HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM, Publisher in Open Access Version: Sciendo (De Gruyter Open), 243 - 266, 2021, Cites: 2
Piotr Dziwinski and Andrzej Przybył and Paweł Trippner and Józef Paszkowski and Yoichi Hayashi, HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM. (2)
HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM
, HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM, Publisher in Open Access Version: Sciendo (De Gruyter Open), 243 - 266, 2021, Cites: 2
Piotr Dziwinski and Andrzej Przybył and Paweł Trippner and Józef Paszkowski and Yoichi Hayashi, HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM. (2)
HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM
, HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM, Publisher in Open Access Version: Sciendo (De Gruyter Open), 243 - 266, 2021, Cites: 2
Piotr Dziwinski and Andrzej Przybył and Paweł Trippner and Józef Paszkowski and Yoichi Hayashi, HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM. (2)
HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM
, HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM, Publisher in Open Access Version: Sciendo (De Gruyter Open), 243 - 266, 2021, Cites: 2
Piotr Dziwinski and Andrzej Przybył and Paweł Trippner and Józef Paszkowski and Yoichi Hayashi, HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM. (2)
HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM
, HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM, Publisher in Open Access Version: Sciendo (De Gruyter Open), 243 - 266, 2021, Cites: 2
Andrzej Przybył, Fixed-Point Arithmetic Unit with a Scaling Mechanism for FPGA-Based Embedded Systems. (5)
Fixed-Point Arithmetic Unit with a Scaling Mechanism for FPGA-Based Embedded Systems
, Fixed-Point Arithmetic Unit with a Scaling Mechanism for FPGA-Based Embedded Systems, Multidisciplinary Digital Publishing Institute, 1164, 2021, Cites: 5
Piotr Dziwinski and Andrzej Przybył and Paweł Trippner and Józef Paszkowski and Yoichi Hayashi, HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM. (2)
HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM
, HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM, Publisher in Open Access Version: Sciendo (De Gruyter Open), 243 - 266, 2021, Cites: 2
Piotr Dziwinski and Andrzej Przybył and Paweł Trippner and Józef Paszkowski and Yoichi Hayashi, HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM. (2)
HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM
, HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM, Publisher in Open Access Version: Sciendo (De Gruyter Open), 243 - 266, 2021, Cites: 2
Piotr Dziwinski and Andrzej Przybył and Paweł Trippner and Józef Paszkowski and Yoichi Hayashi, HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM. (2)
HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM
, HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM, Publisher in Open Access Version: Sciendo (De Gruyter Open), 243 - 266, 2021, Cites: 2
Piotr Dziwinski and Andrzej Przybył and Paweł Trippner and Józef Paszkowski and Yoichi Hayashi, HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM. (2)
HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM
, HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM, Publisher in Open Access Version: Sciendo (De Gruyter Open), 243 - 266, 2021, Cites: 2
Piotr Dziwinski and Andrzej Przybył and Paweł Trippner and Józef Paszkowski and Yoichi Hayashi, HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM. (2)
HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM
, HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM, Publisher in Open Access Version: Sciendo (De Gruyter Open), 243 - 266, 2021, Cites: 2
Piotr Dziwinski and Andrzej Przybył and Paweł Trippner and Józef Paszkowski and Yoichi Hayashi, HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM. (2)
HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM
, HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM, Publisher in Open Access Version: Sciendo (De Gruyter Open), 243 - 266, 2021, Cites: 22018 (3)
Krzysztof Cpalka and Krystian Łapa and Andrzej Przybył, Genetic programming algorithm for designing of control systems. (13)
Genetic programming algorithm for designing of control systems
, Genetic programming algorithm for designing of control systems, 668-683, 2018, Cites: 13
A. Przybył, Hard real-time communication solution for mechatronic systems. (8)
Hard real-time communication solution for mechatronic systems
, Hard real-time communication solution for mechatronic systems, Elsevier Ltd., 309-316, 2018, Cites: 8
Krystian Łapa and Krzysztof Cpałka and Andrzej Przybył and Konrad Grzanek, Negative space-based population initialization algorithm (NSPIA). (10)
Negative space-based population initialization algorithm (NSPIA)
, Negative space-based population initialization algorithm (NSPIA), Springer, Cham, 449-461, 2018, Cites: 102017 (2)
Andrzej Przybył and Meng Joo Er, A Method for Design of Hardware Emulators for a Distributed Network Environment. (1)
A Method for Design of Hardware Emulators for a Distributed Network Environment
, A Method for Design of Hardware Emulators for a Distributed Network Environment, Springer, Cham, 318-336, 2017, Cites: 1
Krystian Łapa and Krzysztof Cpałka and Andrzej Przybył and Takamichi Saito, Fuzzy PID controllers with FIR filtering and a method for their construction. (5)
Fuzzy PID controllers with FIR filtering and a method for their construction
, Fuzzy PID controllers with FIR filtering and a method for their construction, Springer, Cham, 292-307, 2017, Cites: 52016 (5)
Łukasz Bartczuk and Andrzej Przybył and Krzysztof Cpałka, A new approach to nonlinear modelling of dynamic systems based on fuzzy rules. (39)
A new approach to nonlinear modelling of dynamic systems based on fuzzy rules
, A new approach to nonlinear modelling of dynamic systems based on fuzzy rules, 2016, Cites: 39
Andrzej Przybył and Krystian Łapa and Jacek Szczypta and Lipo Wang, The method of the evolutionary designing the elastic controller structure. (3)
The method of the evolutionary designing the elastic controller structure
, The method of the evolutionary designing the elastic controller structure, Springer, Cham, 476-492, 2016, Cites: 3
Andrzej Przybył and Meng Joo Er, A new approach to designing of intelligent emulators working in a distributed environment. (6)
A new approach to designing of intelligent emulators working in a distributed environment
, A new approach to designing of intelligent emulators working in a distributed environment, Springer, Cham, 546-558, 2016, Cites: 6
Andrzej Przybył and Jacek Szczypta, Method of evolutionary designing of FPGA-based controllers. (5)
Method of evolutionary designing of FPGA-based controllers
, Method of evolutionary designing of FPGA-based controllers, 174-179, 2016, Cites: 5
Andrzej Przybył and Meng Joo Er, The method of hardware implementation of fuzzy systems on FPGA. (15)
The method of hardware implementation of fuzzy systems on FPGA
, The method of hardware implementation of fuzzy systems on FPGA, Springer, Cham, 284-298, 2016, Cites: 152015 (3)
Krzysztof Cpalka and Krystian Łapa and Andrzej Przybył, A new approach to design of control systems using genetic programming. (44)
A new approach to design of control systems using genetic programming
, A new approach to design of control systems using genetic programming, 433-442, 2015, Cites: 44
Łukasz Bartczuk and Andrzej Przybył and Petia Koprinkova-Hristova, New method for non-linear correction modelling of dynamic objects with genetic programming. (9)
New method for non-linear correction modelling of dynamic objects with genetic programming
, New method for non-linear correction modelling of dynamic objects with genetic programming, Springer, Cham, 318-329, 2015, Cites: 9
Andrzej Przybył and Jacek Szczypta and Lipo Wang, Optimization of controller structure using evolutionary algorithm. (5)
Optimization of controller structure using evolutionary algorithm
, Optimization of controller structure using evolutionary algorithm, Springer, Cham, 261-271, 2015, Cites: 52014 (5)
Piotr Dziwiński and Łukasz Bartczuk and Andrzej Przybył and Eduard D Avedyan, A new algorithm for identification of significant operating points using swarm intelligence. (32)
A new algorithm for identification of significant operating points using swarm intelligence
, A new algorithm for identification of significant operating points using swarm intelligence, Springer, Cham, 349-362, 2014, Cites: 32
Jacek Szczypta and Andrzej Przybył and Lipo Wang, Evolutionary approach with multiple quality criteria for controller design. (12)
Evolutionary approach with multiple quality criteria for controller design
, Evolutionary approach with multiple quality criteria for controller design, Springer, Cham, 455-467, 2014, Cites: 12
K Cpałka and K Łapa and A Przybył and M Zalasiński, A new method for designing neuro-fuzzy systems for nonlinear modelling with interpretability aspects. (76)
A new method for designing neuro-fuzzy systems for nonlinear modelling with interpretability aspects
, A new method for designing neuro-fuzzy systems for nonlinear modelling with interpretability aspects, Elsevier, 203-217, 2014, Cites: 76
Łukasz Bartczuk and Andrzej Przybył and Petia Koprinkova-Hristova, New method for nonlinear fuzzy correction modelling of dynamic objects. (26)
New method for nonlinear fuzzy correction modelling of dynamic objects
, New method for nonlinear fuzzy correction modelling of dynamic objects, Springer, Cham, 169-180, 2014, Cites: 26
Andrzej Przybył and Meng Joo Er, The idea for the integration of neuro-fuzzy hardware emulators with real-time network. (12)
The idea for the integration of neuro-fuzzy hardware emulators with real-time network
, The idea for the integration of neuro-fuzzy hardware emulators with real-time network, Springer, Cham, 279-294, 2014, Cites: 122013 (3)
Jacek Szczypta and Andrzej Przybył and Krzysztof Cpałka, Some aspects of evolutionary designing optimal controllers. (33)
Some aspects of evolutionary designing optimal controllers
, Some aspects of evolutionary designing optimal controllers, Springer, Berlin, Heidelberg, 91-100, 2013, Cites: 33
Krystian Łapa and Andrzej Przybył and Krzysztof Cpałka, A new approach to designing interpretable models of dynamic systems. (45)
A new approach to designing interpretable models of dynamic systems
, A new approach to designing interpretable models of dynamic systems, Springer, Berlin, Heidelberg, 523-534, 2013, Cites: 45
Łukasz Bartczuk and Andrzej Przybył and Piotr Dziwiński, Hybrid state variables-fuzzy logic modelling of nonlinear objects. (19)
Hybrid state variables-fuzzy logic modelling of nonlinear objects
, Hybrid state variables-fuzzy logic modelling of nonlinear objects, Springer, Berlin, Heidelberg, 227-234, 2013, Cites: 192012 (2)
Andrzej Przybył and Krzysztof Cpałka, A new method to construct of interpretable models of dynamic systems. (43)
A new method to construct of interpretable models of dynamic systems
, A new method to construct of interpretable models of dynamic systems, Springer, Berlin, Heidelberg, 697-705, 2012, Cites: 43
Krzysztof Cpałka Leszek Rutkowski and Andrzej Przybył, Novel on-line speed profile generation for industrial machine tool based on flexible neuro-fuzzy approximation. (95)
Novel on-line speed profile generation for industrial machine tool based on flexible neuro-fuzzy approximation
, Novel on-line speed profile generation for industrial machine tool based on flexible neuro-fuzzy approximation, 1238-1247, 2012, Cites: 952010 (4)
A Przybył and J Smoląg and P Kimla, Real-time Ethernet based, distributed control system for the CNC machine. (5)
Real-time Ethernet based, distributed control system for the CNC machine
, Real-time Ethernet based, distributed control system for the CNC machine, 2010, Cites: 5
Leszek Rutkowski and Andrzej Przybył and Krzysztof Cpałka and Meng Joo Er, Online speed profile generation for industrial machine tool based on neuro-fuzzy approach. (53)
Online speed profile generation for industrial machine tool based on neuro-fuzzy approach
, Online speed profile generation for industrial machine tool based on neuro-fuzzy approach, Springer, Berlin, Heidelberg, 645-650, 2010, Cites: 53
A Przybył and J Smoląg and P Kimla, Rozproszony system sterowania obrabiarką numeryczną bazujący na sieci Ethernet Czasu Rzeczywistego. (0)
Rozproszony system sterowania obrabiarką numeryczną bazujący na sieci Ethernet Czasu Rzeczywistego
, Rozproszony system sterowania obrabiarką numeryczną bazujący na sieci Ethernet Czasu Rzeczywistego, 342-346, 2010, Cites: 0
Andrzej Przybył and Jacek Smoląg and Przemysław Kimla, Distributed control system based on real time ethernet for computer numerical controlled machine tool. (15)
Distributed control system based on real time ethernet for computer numerical controlled machine tool
, Distributed control system based on real time ethernet for computer numerical controlled machine tool, 342-346, 2010, Cites: 152009 (2)
Andrzej Przybył Jacek Smoląg and Przemysław Kimla, Rozproszony system sterowania obrabiarką numeryczną bazujący na sieci Ethernet Czasu Rzeczywistego.. (0)
Rozproszony system sterowania obrabiarką numeryczną bazujący na sieci Ethernet Czasu Rzeczywistego.
, Rozproszony system sterowania obrabiarką numeryczną bazujący na sieci Ethernet Czasu Rzeczywistego., 2009, Cites: 0
Andrzej Przybył, Realizacja w układzie FPGA algorytmu pomiaru prędkości, bazującego na kompensowanym enkoderze inkrementalnym. (0)
Realizacja w układzie FPGA algorytmu pomiaru prędkości, bazującego na kompensowanym enkoderze inkrementalnym
, Realizacja w układzie FPGA algorytmu pomiaru prędkości, bazującego na kompensowanym enkoderze inkrementalnym, 2009, Cites: 02008 (1)
Jerzy Jelonkiewicz and Andrzej Przybył, Accuracy improvement of neural network state variable estimator in induction motor drive. (6)
Accuracy improvement of neural network state variable estimator in induction motor drive
, Accuracy improvement of neural network state variable estimator in induction motor drive, Springer, Berlin, Heidelberg, 71-77, 2008, Cites: 62005 (1)
Jerzy Jelonkiewicz Andrzej Przybył, Knowledge extraction from data for neural network state variables estimators in induction motor. (2)
Knowledge extraction from data for neural network state variables estimators in induction motor
, Knowledge extraction from data for neural network state variables estimators in induction motor, 211–216, 2005, Cites: 22004 (2)
Jerzy Jelonkiewicz and Andrzej Przybył, Influence of the training set selection on the performance of the neural network state variables estimators in the induction motor. (0)
Influence of the training set selection on the performance of the neural network state variables estimators in the induction motor
, Influence of the training set selection on the performance of the neural network state variables estimators in the induction motor, Springer, Berlin, Heidelberg, 966-971, 2004, Cites: 0
Andrzej Przybył Jerzy Jelonkiewicz, State Feedback-Based Control of an Induction Motor in a Single Fixed-Point DSP. (1)
State Feedback-Based Control of an Induction Motor in a Single Fixed-Point DSP
, State Feedback-Based Control of an Induction Motor in a Single Fixed-Point DSP, 1-8, CD, 2004, Cites: 12003 (3)
Andrzej Przybył, Genetic Algorithm for Observer Parameters Tuning. (0)
Genetic Algorithm for Observer Parameters Tuning
, Genetic Algorithm for Observer Parameters Tuning, Springer Science & Business Media, 376, 2003, Cites: 0
Jerzy Jelonkiewicz Andrzej Przybył, Ewolucja czy rewolucja.Nowoczesne techniki informatyczne.. (0)
Ewolucja czy rewolucja.Nowoczesne techniki informatyczne.
, Ewolucja czy rewolucja.Nowoczesne techniki informatyczne., Katedra Inżynierii Komputerowej Politechniki Czest, 493-496, 2003, Cites: 0
Andrzej Przybył Jerzy Jelonkiewicz, Genetic Algorithm for Observer Parameters Tuning in Sensorless Induction Motor Drive.. (20)
Genetic Algorithm for Observer Parameters Tuning in Sensorless Induction Motor Drive.
, Genetic Algorithm for Observer Parameters Tuning in Sensorless Induction Motor Drive., 376-381, 2003, Cites: 202001 (2)
Jerzy Jelonkiewicz Andrzej Przybył, Neural Networks Implementation of Model Reference Adaptive Systems in Induction Motor Drive. (0)
Neural Networks Implementation of Model Reference Adaptive Systems in Induction Motor Drive
, Neural Networks Implementation of Model Reference Adaptive Systems in Induction Motor Drive, CD, 2001, Cites: 0
Andrzej Przybył Jerzy Jelonkiewicz, Induction Motor Parameters Identification Based On Genetic Algorithm. (4)
Induction Motor Parameters Identification Based On Genetic Algorithm
, Induction Motor Parameters Identification Based On Genetic Algorithm, 501-506, 2001, Cites: 41999 (2)
Jerzy Jelonkiewicz Andrzej Przybył, Fuzzy-neural networks in efficiency optimal control of induction motor. (0)
Fuzzy-neural networks in efficiency optimal control of induction motor
, Fuzzy-neural networks in efficiency optimal control of induction motor, 1999, Cites: 0
Jerzy Jelonkiewicz Andrzej Przybył, Efficiency optimal control method of induction motor drive for light vehicles. (0)
Efficiency optimal control method of induction motor drive for light vehicles
, Efficiency optimal control method of induction motor drive for light vehicles, 1999, Cites: 01998 (1)
Jerzy Jelonkiewicz Andrzej Przybył, High Efficient Induction Motor Drive for Light Vehicle. (0)